

SUSTAINABILITY OF GUAYULE-BASED NATURAL RUBBER PRODUCTION

KEY POINTS OF INTEREST

- Increased profitability with less water required
- Minimum guayule rubber selling price required is \$3.04/kg for a net present value of zero over 30 yrs of production
- Minimum rubber selling price assumes the coproduct revenue is generated by selling bagasse at \$0.10/kg and resin at \$1.00/kg
- Global warming of guayule rubber is 11 kg CO2 eq per kg rubber, or 19,458 kg CO2 eq per hectare

EXECUTIVE SUMMARY

SBAR research has generated an integrated model that enables concurrent assessment techno-economics and life cycle impact assessment. The model includes all aspects of the guayule to rubber process with detailed agricultural and biorefining model. The biorefinery produces three products: natural rubber, bagasse, and resin.

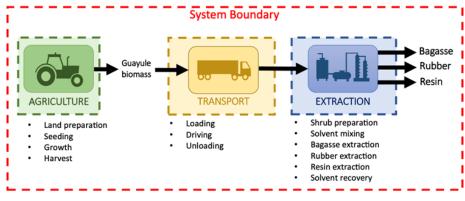
> The current results show that the system can meet economic parity with reduced environmental impact than traditional natural rubber systems when the co-products (bagasse and resin) can be moderately valorized.

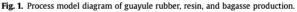
> The modeling work is being used to identify critical areas for further research and development to support commercialization of this drought-tolerant desert crop.

SBAR HIGH-IMPACT ACCOMPLISHMENTS

> Demonstrated guayule as a sustainable commercial crop for the American Southwest.

Developed a unique integrated model that includes guayule agriculture from planting to processor, an integrated TEA/LCA model, and advanced water LCA methods for application in arid regions.


> Designed sustainable biomass supply chain optimization, including the location of processing facilities, transportation, and harvesting logistics.


> Increasing farm profitability with optimal crop rotations and machinery scheduling.

Completion of the BENCO model: a dynamic tool that supports evaluation of the economic, financial, and resource implications of crop adoption.

POINT OF CONTACTS

- Jason Quinn. CSU. Fort Collins, CO. jason.quinn@ colostate.edu
- Clark Seavert. AgBiz
 Innovations. Surprise, AZ.
 agbizinnovations@
 gmail.com
- Kim Ogden. UArizona, Tucson, AZ. ogden@arizona.edu
- Neng Fan. UArizona.
 Tucson, AZ.
 nfan@arizona.edu
- Maryfrances Miller.
 NMSU. Las Cruces, NM.
 franniem@nmsu.edu
- Trent Teegerstrom.
 UArizona. Tucson, AZ.
 tteegers@ag.arizona.edu

FUTURE WORK AND NEEDS

> Drive the technology towards commercialization through resultsbased, focused research and development.

> Evaluate co-product systems for trade-offs that can be used to enhance and direct future research.

> Investigate water use intensity of the optimal cropping systems for guayule.

> Optimize guayule harvest under extreme weather and disruptive events.

- > Update enterprise budgets to reflect current circumstances.
- > Estimate regional economic impact for crop adoption under different scenarios.

 Partner with regional growers to establish break-even prices for guayule and existing crops using the BENCO model. (BENCO – break-even for new crop options)

For more information: https://sbar.arizona.edu

Any opinions, findings, conclusion or recommendation expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. Grant #: **2017-68005-2686**

SBAR Center of Excellence Briefing Paper (Sustainability of Guayule-based Natural Rubber Production). October 2021.